
NYISO 2025-2029 ICAP Demand Curve Reset

ICAP Working Group Meeting

November 8, 2023

Generation Technologies

Confidential Information

Proposed Technology Screening Criteria

- As discussed on 9/26/2023, propose the following initial screening criteria that are consistent with the 2021-2025 Installed Capacity Demand Curve reset (DCR):
 - Standard resource technology available to most market participants
 - Proven technology operating experience at a utility power plant
 - Unit characteristics that can be economically dispatched
 - Ability to cycle and provide peaking service
 - Can be practically constructed in a particular location
 - Capable of meeting environmental requirements and regulations

Recommended Technologies to be Evaluated

- H/J-class Simple Cycle Gas Turbine ("SCGT")
 - With and without CLCPA-compliant operations (i.e. zero-emissions production capability)
 - Viability of CLCPA-compliant alternate to serve as a peaking plant remains under review
- Battery Energy Storage System ("BESS")
 - 4-hour Li-Ion BESS
 - 6-hour Li-Ion BESS
 - 8-hour Li-Ion BESS

CLCPA Compliance

Confidential Information

CLCPA Compliance Timelines

- SCGT designed to burn only fossil fuels and assumed to retired in 2040.
 - Fossil-only option expected to utilize shortened amortization period to account for the CLCPA's 2040 zeroemission requirement.
 - Likely to use the same construct that was utilized for the 2021-2025 DCR
- SCGT designed to burn fossil fuels, but assumed to be retrofitted in 2040 to CLCPA compliant zeroemissions operations
 - Likely to use a 20-year amortization period
 - Considerations:
 - Viability (i.e., commercial operating experience)
 - CLCPA zero-emission compliance guidance
 - CLPCPA compliant fuel basis
 - CLCPA compliant fuel delivery basis
 - Alternative method to consider net energy and ancillary services (EAS) revenues beginning in 2040
- SCGT initially designed to burn CLCPA compliant fuels
 - Clarity of CLCPA compliant options other than renewable and storage remain uncertain
 - Not currently commercially available
 - Fuel supply infrastructure not in place

CLCPA Compliant Fuel Considerations

- Given the current state of compliance guidance for the CLCPA's 2040 zero-emissions requirement, BMcD preliminarily recommends selecting a "zero emissions" fuel as a representative fuel for evaluation
 - Hydrogen
 - Ammonia
 - Renewable natural gas
 - Biofuels
- Zero emission fuel considerations
 - Fuel production
 - Fuel transportation
 - Fuel storage
- BMcD preliminarily recommends that direct air capture (DAC), carbon capture, utilization and storage (CCUS), nuclear (including small modular reactors [SMRs]), and fuel cells not be considered

Technology options may not have same flexibility of dispatchable operations and/or
 cycling capability

BESS Technologies

Confidential Information

BESS Preliminary Recommendations for DCR

- 200 MW at 4, 6, 8-hour discharge durations
 - Consistent with 2021-2025 DCR
- Zones C, F, G, K:
 - Lithium-ion technology
 - Purpose-built enclosure form factor
 - Single elevation
 - Not specific to a particular chemistry or OEM
- Zone J
 - Lithium-ion technology
 - Purpose-built enclosure form factor
 - Single elevation
 - Not specific to a particular chemistry or OEM
 - Will need to account for FDNY requirements

Anticipated BESS Technology Considerations

- BMcD/AG are investigating several anticipated considerations
 - We invite stakeholder feedback in Q4 2023 on these items (and others) to aid in development of assumptions and cost estimates.
- Storage technology type (lithium-ion vs. the field)
- Zone J specific considerations
 - Spatial and location constraints
 - Form factor / site energy density
 - FDNY requirements
- Consideration of capacity accreditation factors
- Capital cost volatility
- Overbuild and augmentation

BESS Trends: Lithium-ion Technology

- Proven market dominance for utility-scale stationary storage in 1-4 hour discharge duration applications
- Competitive in longer duration applications (<u>i.e.</u>, multiple 8-hour RFP awards to lithium-ion developments)
- Movement toward modular form factors
- General market preference for lithium-iron-phosphate (LFP) chemistry
- Investments in US manufacturing capability

BESS Trends: Non-Lithium Technology

- Most non-lithium technologies are targeted for long duration
 - "Long duration" commonly means 8+ hour discharge duration at rated power
 - Battery systems (i.e., redox flow, hybrid flow, high temp, other electrochemical)
 - Mechanical storage
 - Thermal storage
- Increasing interest and activity from utilities, developers, investors
- Movement toward modular products/designs
- Investments in US manufacturing capability

Commercial Maturity at Utility Scale

BESS Technology	Typ. Discharge Duration (hours)	RTE AC (%)*	Approx. Installed in US (MWh)**	Capital Cost Source	O&M Cost Source	Maturity for DCR
Lithium-ion	1 - 8	85%	>10,000 MWh	Market Info	Market Info	YES
Vanadium Redox Flow	4+	< lithium		Rely on OEM info	Rely on OEM info	No
Hybrid Flow	4 - 12	< lithium		Rely on OEM info	Rely on OEM info	No
Other Electrochemical	4 - 12	< lithium	~100 MWh	Rely on OEM info	Rely on OEM info	No
High Temp BESS	4 - 12	< lithium		Rely on OEM info	Rely on OEM info	No
Mechanical (non PH or CAES)	6 - 12	< lithium	COMBINED	Rely on OEM info	Rely on OEM info	No
Multi Day Storage	100	< lithium		Rely on OEM info	Rely on OEM info	No

*RTE = Roundtrip Efficiency for BESS

**Intended to indicate the order of magnitude scale of known installations of BESS for utility scale, stationary storage applications through 2022.

- Approximate information intended to represent utility scale maturity and preliminary technology characteristics
- Preliminary opinion is that lithium-ion is the only storage option that meets the screening criteria for "proven technology"
- Pumped hydro and compressed air not considered due to site-specific geographic / geologic requirements.

Zone J Considerations

- Spatial Considerations
 - 2021-2025 DCR assumption for land: 9,12,15 acres for 4,6,8 hours.
 - ~100 MWh ROM energy density for lithium
 - Will need to consider whether to retain the 2021-2025 acreage assumptions
 - Could consider whether alternative assumptions are warranted based on currently proposed projects in NYC
- NYISO queue information for Zone J:

Project Location for Zone J Interconnection	Qty
Queens	11
Brooklyn	10
Staten Island	6
Bronx	5
Manhattan	1
New Jersey	1

Zone J BESS	Value
Min MW	15
Avg.MW	205
Median MW	100
Max MW	650

Zone J Considerations (continued)

- Form factor
 - Not assumed for the 2021-2025 DCR
 - Preliminarily recommending assumption for purpose-built-enclosure for this DCR
- Other FDNY Considerations

Other BESS Considerations for Discussion

BMcD/AG have discussed the following items internally and welcome feedback for further consideration.

- Consideration of Capacity Accreditation Factors (CAFs)
 - NYISO is evaluating CAFs for multiple storage durations.
 - Will consider preliminary information produced to date, as well as the results produced for the 2024/2025 Capability Year
- Market Price Volatility
 - Lithium-ion BESS equipment pricing is trending downward.
 - Equipment costs/assumptions would initially be based on indicative pricing from Q4 2023
 Q1 2024.
- Overbuild and Augmentation
 - Current IRS guidance is unclear about augmentation qualifying for investment tax credit (ITC).

1898 Current tax credit environment may incentivize higher initial overbuild.

Technologies Not Likely to be Evaluated

• F-class SCGT

• H/J-class gas turbines evaluate better compared to F-class

F-class SCGT	Commercial Operation in U.S.	ISO Capacity (MW)	HHV Heat Rate (Btu/kWh)	Initial Screening Cost (\$/kW)
GE 7F.05	\checkmark	239	9,850	\$10E0 (I/W)
Siemens SGT6-5000F	\checkmark	260	9,470	\$1050/kW
G/H/J - Class SCGT	Commercial Operation in U.S.	ISO Capacity (MW)	HHV Heat Rate (Btu/kWh)	Initial Screening Cost (\$/kW)
GE 7HA.03	\checkmark	430	8,750	
Siemens SGT6-9000HL	\checkmark	440	8,770	\$750/kW
MPA M501JAC	\checkmark	453	8,610	
GE 7HA.02	\checkmark	384	8,890	\$800/kW
GE 7HA.01	\checkmark	290	9,010	
Siemens SGT6-8000H	\checkmark	310	9,390	\$900/kW
MPA M501GAC	\checkmark	283	9,470	

1898[№]

Technologies Not Likely to be Evaluated

- Reciprocating Internal Combustion Engines ("RICE")
- Aeroderivative SCGT

	Commercial Operation in U.S.	ISO Capacity (MW)	HHV Heat Rate (Btu/kWh)	Initial Screening Cost (\$/kW)
Siemens SGT-A35	\checkmark	33	9,510	\$2000/kW
GE LM6000PF+	\checkmark	54	9,230	
MPA FT8 SWIFTPAC 60	\checkmark	61	10,300	\$1800/kW
MPA FT4000 SWIFTPAC 70	\checkmark	72	9,140	
GE LMS100PB	\checkmark	107	8,850	\$1200/kW
Wartsila 18V50SG	\checkmark	18	8,290	\$1,700

